

Instructions: Read all questions carefully to ensure you understand what is being asked. When completing your official tests / exams, your grade will be based upon your: understanding, fluency, reasoning, and problem solving, so ensure you show all lines of working and draw accurate, labelled diagrams where necessary. (ACiQl9.0 Mathematics standard elaborations found on final page (general assessment marking standards)). [Practise tests are marked out of a score of 10]. For multiple choice questions, tick or fill in the circle next to the corresponding letter under the question.

Check your work if you have time. Remember: you don't have to start at question one, it's always best to firstly look through the test, highlight the easy looking questions and complete them first, then secondly, go back through and work on the harder questions. Good luck! And remember to breathe!

$$\sum = \frac{10}{10} = \%$$

Part 1: Multiple Choice (2 marks)

Question 1:

a) A shop offers a $15\,\%$ discount on an item priced at \$80. What is the discount amount?

A. \$10	B. \$12	c. \$15	D. \$20	
A	ОВ	○ c	○ D	
Space for Q1a				

b) A formula for the cost of a taxi ride is C=4+2.5d , where C is the cost in dollars and d is the distance in kilometres. What is the cost for a $6 \, km$ ride?

A. \$17	B. \$19	C. \$21	D. \$23
A	ОВ	○ c	○ D
Space for Q1b			

Question 2:

a) If n=5 , what is the value of the expression 3n+7 ?

A. 15

B. 22

C. 25

D. 30

○ B

 \bigcirc c

 \bigcirc D

b) A bank account earns $2\,\%$ simple interest per year. If \$500 is invested for $1\,year$, what is the

\$5	B. \$10	C. \$15	D. \$20
A	ОВ	○ c	○ D
ace for Q1b			
	B . A 61		
ormula for th	ne perimeter of a rectangle	ort Answer (4 marks) e is $P=2(l+w)$, where l is a length of $8cm$ and a width	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	
formula for th	ne perimeter of a rectangle	is $P=2(l+w)$, where l is t	

rice?					
	$nulaA = l \times w, \ fin$	nd the area of	a rectangle witl	n a length of 12	cm and a width of
	$\mathbf{nula}A = l \times w, \mathbf{fin}$	nd the area of	a rectangle witl	n a length of 12	cm and a width of
	$\mathbf{nula}A = l \times w, \ \mathbf{fin}$	nd the area of	a rectangle wit	n a length of 12	cm and a width of
	$\mathbf{nula}A = l \times w, \mathbf{fin}$	nd the area of	a rectangle with	n a length of 12	cm and a width of
	nula $A=l\times w$, fin	nd the area of	a rectangle wit	n a length of 12	cm and a width of
	nula $A=l\times w$, fin	nd the area of	a rectangle with	n a length of 12	cm and a width of
	$\mathbf{nula}A = l \times w, \mathbf{fin}$	nd the area of	a rectangle with	n a length of 12	cm and a width of
	$\mathbf{nula}A = l \times w, \mathbf{fin}$	nd the area of	a rectangle with	n a length of 12	cm and a width of
	nula $A = l \times w$, fin	nd the area of	a rectangle with	n a length of 12	cm and a width of
	nula $A = l \times w$, fin	nd the area of	a rectangle wit	n a length of 12	cm and a width of
	nula $A = l \times w$, fin	nd the area of	a rectangle with	n a length of 12	cm and a width of
	nula $A = l \times w$, fin	nd the area of	a rectangle with	n a length of 12	cm and a width of
Using the form	nula $A=l\times w$, fin	nd the area of	a rectangle with	n a length of 12	cm and a width of

o) A budget allocates $\$120$ for groceries. If 25% of the budget is spent on vegetables, how much money is spent on vegetables?				
	Part 3: Problem Solvi	ng (4 marks)		
Question 5:				
		message. Write a formula for the total cost $oldsymbol{C}$ s are sent in a month, calculate the total cost.		

				T is the time in ${f y}$	ears. Calculate the i	nteres
		ear for 2 year	S' •			
earned on \$10	00 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					
earned on \$10	000 at 3 % per y					

A snop reduces the price of a shirt by 30% . If the sale price is 533 , what was the original price?					

Solutions

1a. (0.5 marks)

B. \$12.

Discount amount:

Discount =
$$15\%$$
 of \$80
= $\frac{15}{100} \times 80$
= 0.15×80
= \$12.

b. (0.5 marks)

B. \$19.

Taxi ride cost:

For
$$d = 6$$
,
 $C = 4 + 2.5 \times 6$
 $= 4 + 15$
 $= 19 .

C = 4 + 2.5d

2a. (0.5 marks)

B. 22.

Expression evaluation : 3n + 7

For
$$n = 5$$

 $3n + 7 = 3 \times 5 + 7$
 $= 15 + 7$
 $= 22$.

b. (0.5 marks)

B. \$10.

Simple interest:

$$I = PRT$$

 $P = 500$,
 $R = 2\% = 0.02$,
 $T = 1$.
 $I = 500 \times 0.02 \times 1$
 $= 10 .

3a. (1 mark)

Perimeter of rectangle:

$$P = 2(l + w)$$

Given:

$$l = 8, w = 5$$

 $P = 2(8 + 5)$
 $= 2 \times 13$
 $= 26 cm$.

b. (1 mark)

Pricé increase :

Increase =
$$20\%$$
 of \$50
= $\frac{20}{100} \times 50$
= 0.2×50
= \$10.

New price
$$= 50 + 10$$

= \$60.

4a. (1 mark)Area of rectangle :

$$A = l \times w$$

Given:

$$l = 12, w = 3$$
.

$$A = 12 \times 3$$
$$= 36 cm^2$$

b. (1 mark)

Budget for vegetables :

Amount =
$$25 \%$$
 of \$120
= $\frac{25}{100} \times 120$
= 0.25×120
= \$30.

5a. (1 mark)

Phone plan cost:

$$C = 30 + 0.10t$$

For
$$t = 150$$

 $C = 30 + 0.10 \times 150$
 $= 30 + 15$
 $= 45 .

Member of the Australian Tutoring Association

b. (1 mark)

Discounted jacket price :

Discount = 25 % of \$120
=
$$\frac{25}{100} \times 120$$

= 0.25 × 120
= \$30.
Sale price = \$120 - \$30

= \$90.

Simple interest :

$$I = PRT$$

Given:

$$P = 1000$$
,
 $R = 3\% = 0.03$,
 $T = 2$.
 $I = 1000 \times 0.03 \times 2$
 $= 60 .

b. (1 mark)

Original price of shirt:

Sale price =
$$70\%$$
 of original price (since 30% discount)
Let original price = x .
 $0.7x = 35$

$$x = \frac{35}{0.7}$$
= \$50.

$$\sum = \frac{10}{10} = \%$$

General Assessment Marking Standards

Remember: When your official tests are marked, they won't be a score out of 10, they will be a grade (A,B,C,D,E) based on the following standards:

ACiQ v9.0

Year 7 Mathematics standard elaborations

		A	В	С	D	E
		The folio of student work c	ontains evidence of the follo	wing:		
	Understanding	accurate and consistent identification, representation, description and connection of mathematical concepts and relationships in complex unfamiliar, complex familiar, and simple familiar situations	accurate identification, representation, description and connection of mathematical concepts and relationships in complex familiar and simple familiar situations	identification, representation, description and connection of mathematical concepts and relationships in simple familiar situations	partial identification, representation and description of mathematical concepts and relationships in some simple familiar situations	fragmented identification, representation and description of mathematical concepts and relationships in isolated and obvious situations
roficiencies	Fluency	choice, use and application of comprehensive facts, definitions, and procedures to find solutions in complex unfamiliar, complex familiar, and simple familiar situations	choice, use and application of effective facts, definitions, and procedures to find solutions in complex familiar and simple familiar situations	choice, use and application of facts, definitions, and procedures to find solutions in simple familiar situations	choice and use of partial facts, definitions, and procedures to find solutions in some simple familiar situations	choice and use of fragmented facts, definitions and procedures to find solutions in isolated and obvious situations
Mathematical proficiencies	Reasoning	comprehensive explanation of mathematical thinking, strategies used, and conclusions reached in complex unfamiliar, complex familiar, and simple familiar situations	detailed explanation of mathematical thinking, strategies used, and conclusions reached in complex familiar and simple familiar situations	explanation of mathematical thinking, strategies used, and conclusions reached in simple familiar situations	partial explanation of mathematical thinking, strategies used, and conclusions reached in some simple familiar situations	fragmented explanation of mathematical thinking, strategies used, and conclusions reached in isolated and obvious situations
	Problem-solving	purposeful use of problem- solving approaches to find solutions to problems.	effective use of problem- solving approaches to find solutions to problems.	use of problem-solving approaches to find solutions to problems.	partial use of problem-solving approaches to make progress towards finding solutions to problems.	fragmented use of problem- solving approaches to make progress towards finding solutions to problems.

IMPORTANT: At Acacia Tutoring we believe all educational resources should be free, as education, is a fundamental human right and a cornerstone of an equitable society. By removing financial barriers, we ensure that all students, regardless of their socioeconomic background, have equal access to high-quality learning materials. This inclusivity promotes fairness, helps bridge achievement gaps, and fosters a society where every individual can reach their full potential.

Furthermore, free resources empower teachers and parents, providing them with tools to support diverse learners and improve outcomes across communities. Education benefits everyone, and making resources universally accessible ensures we build a more informed, skilled, and prosperous future for all.

All documents are formatted as a .pdf file, and are completely FREE to use, print and distribute - as long as they are not sold or reproduced to make a profit.

N.B. Although we try our best to produce high-quality, accurate and precise materials, we at Acacia Tutoring are still human, these documents may contain errors or omissions, if you find any and wish to help, please contact Jason at info@acaciatutoring.com.au .

